
附件: 参考作业报告模板

《软件工程课程设计》作业报告

作业名称: Dental Practice System

 学 院 计算机科学与工程学院

 专 业 计算机科学与技术

 姓 名 黄 冠

任课教师 李 剑

 提交日期 2012 年 6 月 25 日

Part 1. Requirement

Exercise 1.1
Indentify requirements from different viewpoints such as patients, the dental assistant,
the dental hygienist and the receptionist.

1. Listed in the form of items.

Solution

Patients 1. The patient should know the phone number of the dental
place.

2. The patient make & cancel appointment via the phone call
and the receptionist operate with the computer to make &
cancel the appointment.

Receptionist 1. The system should has a login system. Users log in the
dental system before doing other things.

2. The system should save the patients' information for next
time revisiting.

3. The user can make & cancel appointments in a calendar.
4. The system can print out a notification list for making

reminder calls 2 days before appointments.
5. The system print out daily and weekly work schedules

with all the patients.

Dental hygienist &
dental assistant

1. The system can mark the appointment as completed and
add comments.

2. The system can schedule the patient for the next visit.
3. The system can answer queries for patient records by

patient name and date.

Exercise 1.2
Draw a use case diagram for the dental practice system.

1. To show the dental practice system’s functions and how it interacts with external
users.

2. Should be drawn in the form of “Use case diagram” in Rational Rose.

Solution

Part 2 Design

Exercise 2.1
Draw a class diagram for the dental practice system.

1. Identify the main classes in the dental practice system.
2. Should be drawn in the form of “class diagram” in Rational Rose.

Solution

Exercise 2.2
Draw a sequence diagram for the dental practice.

1. To show the process of ‘appointment’.
2. Should be drawn in the form of “sequence diagram” in Rational Rose.

Solution

Part 3. Development

Exercise 3.1
Develop a prototype to implement the function of ‘appointment’.

1. Include user interfaces and the function of ‘appointment’.
2. Implemented in Java or other object-oriented programming languages

(Implement the classes in your design).
3. Follow MVC model.

Solution

My prototype is written in C++ with Qt4 (a very popular and portable UI library). I
have implemented the 'appointment' function and it approximately follows the
following MVC design model.

The model classes PatientModel, AppointmentModel, CommentModel

The controller classes AppointmentController

The viewer classes AppointmentCalendarView, DailyWorkScheduleView,
WeeklyWorkScheduleView, NotificationListView,
PatientSearchView

The PatientModel class:
class PatientModel : public Model
{
public:
 int id;
 int gender;
 QString name;
 QString phone;
 QString address;
public:
 PatientModel();
};

The AppointmentModel class:
class AppointmentModel : public Model
{
public:
 AppointmentModel();
public:
 int id;
 int patientId;
 QString phone;
 QString purpose;
 QString date;
 int beginTime;
 int endTime;
 QString state;
};

To make an appointment, the receptionist will use the AppointmentCalendarView.

The AppointmentCalendarView preview:

In the preview screenshot, it shows a calendar for scheduling appointments. The
receptionist will use this calendar to make appointments with patients. The gray cells
mean the past appointments, the yellow highlights the appointments of today while the
green ones are the future appointments. Every cell simply displays the name of the
patient, the purpose and time interval of the appointment.

The user can right click a blank cell item on the calendar and choose the menu button
“Make Appointment”, an AddAppointment Dialog will pop up and ask for information.

If the user click an existing cell item on the calendar, the “Edit” and “Cancel” menu
buttons are shown to make changes to the existing appointment. So making two
appointments in an intersected time region is impossible.

The AppointmentController class:

class AppointmentController : public Controller
{
private:
 QList<AppointmentModel*> appointmentList;
public:
 AppointmentController();
 ~AppointmentController();

 AppointmentModel* make(QString name, QString phone, QString purpose, QString date, int
beginTime, int endTime);
 void cancel(int id);
 void mark(int id, int state);
 void comment(int id, QString com);
 AppointmentModel* find(QString date, int beginTime);
 QList<AppointmentModel*> find(QString date);
 QList<AppointmentModel*> find(int patientId);
 QList<AppointmentModel*> findAll();

 void save();
};

When the user clicks the “Make Appointment” menu button, the following program will
be executed.

void AppointmentCalendarView::on_actionMake_triggered()
{
 QList<QTableWidgetSelectionRange> list = this->ui->calendarView->selectedRanges();
 if(list.size() == 0)
 return;
 QTableWidgetSelectionRange r = list[0];
 /* 禁止选择多列，但可以选择多行，表示预约时间比较长。 */
 if(r.leftColumn() != r.rightColumn()){
 QMessageBox::warning(0, "Invalid", "Multiple columns are not allowed.");
 return;
 }
 /* 计算光标所在的预约的日期 */
 QString date = this->dayOfWeek.addDays(r.leftColumn()).toString("yyyy-MM-dd");
 /* 添加预约信息的对话框 */
 AddAppointment add;
 add.show();
 if(add.exec()){
 if(add.getName().isEmpty()){
 QMessageBox::warning(0, "Invalid", "You must input a valid patient name.");
 return;
 }
 /* 调用 appointmentController的方法把信息输入到数据库 */
 this->appointmentController.make(add.getName(), add.getPhone(), add.getPurpose(),
date, r.topRow(), r.bottomRow());
 /* 更新 CalendarView */
 this->updateCalendarView();
 }
}

The make method of AppointmentController creates a new appointment and inserts it
into the database.

AppointmentModel* AppointmentController::make(QString name, QString phone, QString
purpose, QString date, int beginTime, int endTime)
{
 PatientModel* p = new PatientModel(name);
 AppointmentModel* a = new AppointmentModel;
 a->patientId = p->id;
 a->phone = phone;
 a->date = date;
 a->beginTime = beginTime;
 a->endTime = endTime;
 a->purpose = purpose;
 a->id = time(0)%1000000;
 this->appointmentList.append(a);

 printf("Added new appointment %d.\n", a->id);
 return a;
}

To mark the appointment as completed and add comments, the assistant or hygienist
will use the DailyWorkScheduleView.

The receptionist might use the NotificationListView to gain a list of patients that will
have appointments in 2 days and remind them as soon as possible.

The WeeklyWorkScheduleView shows the work of the week.

The PatientSearchView helps the hygienist to find patient records.

Part 4. Test

Exercise 4.1
Draw a graph to show the structure (execution) of the ‘appointment’
program.

Solution

Exercise 4.2
Test case design for the ‘appointment’ program.

1. Should cover all statements (or methods) of the program.
2. Every branch should been exercised for true and false conditions.
3. List input and corresponding execution path.

Solution

The structural testing is used in this program. Path testing requires that each
independent path through the program is executed at least once.

Assume that the appointment time is available except Tuesday 8:00 A.M. The patient
name Xiaoxia is in the database while Patrick is not.

The execution path is as below.

Input Execution Path

Time: Tuesday 8:00 A.M.
Patient: Xiaoxia

1 → 2 → 3 → 10 → 2 → 3 → 4 → 7 → 8 → 9

Time: Monday 8:00 A.M.
Patient: Patrick

1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9

In this test case, two independent paths cover all the statements of the 'appointment'
program. Therefore, the program is well tested.

	Part 1. Requirement
	Exercise 1.1
	Exercise 1.2

	Part 2 Design
	Exercise 2.1
	Exercise 2.2

	Part 3. Development
	Exercise 3.1

	Part 4. Test
	Exercise 4.1
	Exercise 4.2

