The First Math Problem

Show that sqrt(6)+sqrt(3) is irrational.

Proof:

Imagine sqrt(6)+sqrt(3) is rational,

Let p/q=sqrt(6)+sqrt(3), p and q are natural numbers and (p,q)=1,

Then p^2=3*(3+2*sqrt(2))*q^2,

Thus 3|p,

Let p=3m,

Then 3m^2=(3+2*sqrt(2))*q^2,

Thus 3|q, which contradicts our initail condition (p,q)=1,

Hence sqrt(6)+sqrt(3) is irrational.

此语法让我想到Basic。

The First Math Problem》有1个想法

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

This site uses Akismet to reduce spam. Learn how your comment data is processed.